CAMPUS PARK WEST PROJECT

APPENDIX J

VOLUME 2: PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

PDS2005-3813-05-001(SPA); PDS2005-3800-05-003(GPA); PDS2005-3600-05-005(REZ); PDS2005-3100-5424(TM); Log No. PDS2005-3910-05-02-009(ER); State Clearinghouse No. 2009061043

for the

FINAL SUBSEQUENT ENVIRONMENTAL IMPACT REPORT

June 18, 2014

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT CAMPUS PARK WEST APNs 108-121-14, 125-061-01, 125-063-01, 125-036-07, 125-061-08 SAN DIEGO COUNTY, CALIFORNIA, 92028

> GPA 05-003, SPA 05-001, REZ 05-005, TM5424, ER 05-02-009

> > Prepared for:

Pappas Investments

2020 L Street, 5th Floor Sacramento, California 95814

Project No. 042410-004

November 6, 2012

Leighton and Associates, Inc.

A LEIGHTON GROUP COMPANY

November 6, 2012

Project No. 042410-004

- To: Pappas Investments 2020 L Street, 5th Floor Sacramento, California 95811
- Attention: Mr. Thad Johnson
- Subject: Limited Phase II Environmental Site Assessment Report, Campus Park West, 108-121-14, 125-061-01, 125-063-01, 125-036-07, 125-061-08, San Diego County, California 92028

INTRODUCTION

Leighton and Associates, Inc. (Leighton) performed a limited Phase II Environmental Site Assessment (ESA) for the Campus Park West property in San Diego County, California (subject site) (Figure 1, Site Location Map). The scope of work for the limited Phase II ESA investigation was based on the findings of the previous Phase I ESA report (Leighton, 2009) prepared for the subject site that identified the following historical land uses that resulted in recognized environmental conditions:

- 1) The possible presence of herbicides, pesticides, or rodenticides in soil in areas historically used for citrus grove farming;
- 2) A storage container with a tractor leaking oil; and
- Water wells and septic systems associated with historical farming and horse facilities may be present within the Site boundaries and may be encountered during grading activities;

Based on the findings of the referenced Phase I ESA report, the County of San Diego Department of Planning and Land Use (SD-DPLU) required a Limited Phase II Environmental Site Assessment in the areas with the highest likelihood of contamination and in the areas with the greatest potential for human exposure to soils. In response to this requirement, the following scope of work was performed to evaluate the possible absence/presence of contaminated soil associated with the Site's agricultural historical land use (HLU).

SCOPE OF WORK

Field Investigation

<u>Soil Sampling</u>

Fifteen (15) hand auger soil borings were located in areas intended to be developed for residential and mixed residential/commercial use (Figure 2). In addition, one (1) hand auger boring was advanced near the RC Flying Club's storage containers due to presence of oils and fuels being stored in the containers. Soil samples were collected at 0.5 feet and between 2 and 3 feet below ground surface (bgs) as directed by SD-DPLU. Borings B-11 and B-14 were determined to be located in a biological resource area and the center of the proposed Pankey Road alignment, respectively, and therefore were not analyzed as part of this investigation. The location of the hand auger borings are noted on Figure 2. A summary of the sample locations and depths are discussed below.

During boring advancement, a photoionization detector (PID) was used to evaluate the soil samples for the presence or absence of volatile organic hydrocarbon vapors. Each soil sample collected was placed in an ice-cooled chest for temporary storage and transported to a State of California Certified laboratory (Associated Laboratories, Orange, California) for selected chemical analyses with a completed chain of custody. Drilling equipment was decontaminated before the commencement of any drilling activities and between the collection of soil samples.

Laboratory Analysis

Twenty eight (28) soil samples were analyzed for organochlorine pesticides by EPA Method 8081. In addition, two (2) soil samples were analyzed for total petroleum hydrocarbons carbon chain identification (TPH ccid) by EPA Method 8015 from boring B-10 due to the possible presence of hydrocarbons released from the tractor stored in the container (Leighton, 2009).

RESULTS OF INVESTIGATION

Organochlorine Pesticides

No organochlorine pesticides were detected in 20 of the 28 soil samples collected and analyzed by EPA Method 8081. No reportable concentrations of organochlorine pesticides were detected in the soil samples collected from 9 of the 14 soil borings with detections only in borings B-4, B-6, B-9, B-10, and B-12. Detected low concentrations of 4,4'-DDD ranged from 0.006 mg/Kg (B-4 at 0.5 feet bgs) to 0.013 mg/Kg (B-10 at 0.5 feet bgs). The detected low concentrations of 4,4'-DDE ranged from 0.0053 mg/Kg (B-10 at 0.5 feet bgs). Detected low concentrations of 4,4'-DDT ranged from 0.0076 mg/Kg (B-12 at 0.5 feet bgs) to 0.051 mg/Kg (B-4 at 0.5 feet bgs). Concentrations of detected Dieldrin ranged from 0.0099 mg/Kg (B-6 at 2 feet bgs) to 0.073 mg/Kg (B-4 at 2 feet bgs). Chlordane was only detected in two samples at concentration of 0.059 mg/Kg and 0.094 mg/Kg in borings B-10 and B-12 at 0.5 feet bgs, respectively.

Detected concentrations of all organochlorine pesticides were below their respective California EPA California Human Health Screening Levels (CHHSLs) for residential use in all the samples collected with the exception of Dieldrin in two soil samples (B-4 at 2 feet bgs and B-10 at 0.5 feet bgs), which slightly exceeded the residential use CHHSL. The Dieldrin level at the subject site is not of concern however, since the 95% Upper Confidence Interval (95% UCL) for all samples analyzed for Dieldrin is below residential CHHSLs (see Statistical Analysis Section of the text, Tables 1 and 2 and Appendix C).

The organochlorine pesticide results are summarized in Table 1. A copy of the Associated Laboratories analytical reports is provided in Appendix B.

Total Petroleum Hydrocarbons

Two (2) soil samples collected from boring B-10 (0.5 feet and 2 feet bgs) were tested for Total Petroleum Hydrocarbons carbon chain identification (TPHccid). No light-end hydrocarbons (C_6 to C_{10}) were detected in any of the samples. Mid range hydrocarbons (C_{10} to C_{22}) and heavy-end hydrocarbons (C_{22} to C_{36}) were detected only in one sample, B-10 at 0.5 feet bgs, at concentrations of 50.4 mg/Kg and 168 mg/Kg, respectively. The detected concentrations of TPH in B-10 at 0.5 feet bgs are below the California Regional Water Quality Control Board – San Francisco Bay Region's (SFRWQCB) Environmental Screening Levels (ESLs) for TPH middle distillates (C_9 to C_{25}) and TPH residual fuels (C_{24} to C_{40}) in shallow soils of 83 mg/Kg and 370 mg/Kg, respectively (SFRWQCB, 2007).

The TPH results are summarized in Table 1. A copy of the Associated Laboratories analytical reports is provided in Appendix B.

Statistical Analysis

Leighton Consulting evaluated the results of the soil sample analyses to determine the mean and the 95% upper confidence intervals (UCLs) of the mean for Dieldrin in soil. This evaluation was conducted to establish if the 95% UCL for Dieldrin of 0.0181 mg/Kg in soil is significantly below the California EPA CHHSLs of 0.035 mg/Kg for total exposure to soils in areas of residential use. The statistical methods used during this investigation and the calculated values were generated by utilizing the United States Environmental Protection Agency (EPA)'s statistical program, ProUCL, version 4.1 (USEPA, 2011).

The data were imported into ProUCL and statistical evaluation of Dieldrin analytical results for the complete data set, including non-detects (concentration conservatively input as the reporting limit), was completed to calculate the confidence intervals. The mean and the 95% UCL of the population mean for Dieldrin was 0.0134 mg/Kg and 0.0181 mg/Kg, respectively. Based on these results, the 95% UCL for Dieldrin in soil is below the CHHSLs and soils are suitable for residential use at the Site. The ProUCL datasheet is summarized in Table 2 and the complete datasheet is included in Appendix C.

SUMMARY OF FINDINGS AND CONCLUSIONS

Based on the results of the limited Phase II ESA the following is a summary of findings and conclusions.

- No organochlorine pesticides were identified in 14 of the 28 samples analyzed.
- Low concentrations of organochlorine pesticides were detected in the soil samples collected from borings B-4, B-6, B-9, B-10, and B-12.
 - Very low concentrations of 4,4'-DDD, all below the residential CHHSLs of 2.4 mg/Kg, were found in two samples at 0.006 mg/Kg (B-4 at 0.5 feet bgs) and 0.013 mg/Kg (B-10 at 0.5 feet bgs).

- Very low concentrations of 4,4'-DDE, all below the residential CHHSLs of 1.7 mg/Kg, were found in seven samples at concentrations ranging from 0.0053 mg/Kg (B-10 at 0.5 feet bgs) to 0.063 mg/Kg (B-4 at 0.5 feet bgs).
- Concentrations of 4,4'-DDT, all below the residential CHHSLs of 1.7 mg/Kg, were found in four samples at concentrations ranging from 0.0076 mg/Kg (B-12 at 0.5 feet bgs) to 0.051 mg/Kg (B-4 at 0.5 feet bgs).
- Concentrations of Dieldrin found in four samples ranged from 0.0099 mg/Kg (B-6 at 2 feet bgs) to 0.073 mg/Kg (B-4 at 2 feet bgs).
- Very low concentrations of Chlordane was detected only sample B-10 at 0.5 feet bgs and B-12 at 0.5 feet bgs at concentrations of 0.059 mg/Kg and 0.094 mg/Kg, respectively, which are well below the residential CHHSL of 0.44 mg/Kg.
- No other organochlorine pesticides were detected above laboratory reporting limits.
- Only two samples were found to have detected concentrations of Dieldrin above California EPA residential CHHSLs. The mean (0.0134 mg/Kg) and the 95% UCL of the population mean (0.0181 mg/Kg) of the samples analyzed for Dieldrin are well below the residential CHHSL of 0.035 mg/Kg. Based on these results, the 95% UCL for Dieldrin in soil is below the CHHSL and soils are suitable for use at the residential Site.
- TPH was detected in B-10 at 0.5 feet bgs only at concentrations of 50.4 (C₁₀ to C₂₂) mg/Kg and 168 (C₂₂ to C₃₆) mg/Kg. The detected concentrations of TPH in B-10 at 0.5 feet bgs are below the SFRWQCBs ESLs for TPH middle distillates (C₉ to C₂₅) and TPH residual fuels (C₂₄ to C₄₀) in shallow soils of 83 mg/Kg and 370 mg/Kg, respectively. These concentrations are below the SFRWQCB screening levels for hydrocarbon impacted soils, thus the soils are suitable for use at the residential Site.
- TPH was not detected above laboratory reporting limits in B-10 at 2 feet bgs.

RECOMMENDATIONS

Based on the results of this limited Phase II ESA Leighton recommends no further action at this time. No soils requiring remediation at the subject site were found during this subsurface investigation. However, when the metal storage containers are removed from the subject site, the areas beneath the containers should be inspected for hydrocarbon stained or odorous soils, or indications of the release of hazardous materials, and if such soils are discovered, further testing should be conducted.

In general, observations should be made during any future site development for areas of possible contamination such as, but not limited to, the presence of underground facilities, buried debris, waste drums, tanks, staining or odorous soils. Should such materials be encountered, further investigation and analysis may be necessary at that time.

CLOSING

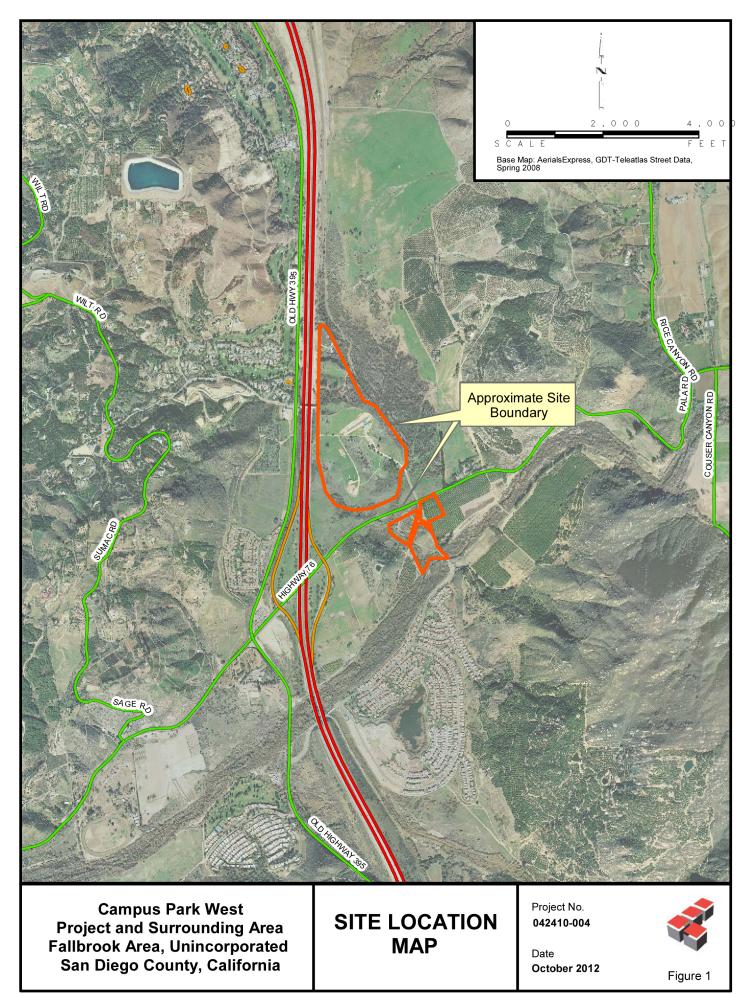
Should you have any questions regarding this report, please contact the undersigned at (949) 378-8448 or <u>gtellegen@leightongroup.com</u>. We appreciate the opportunity to be of service.

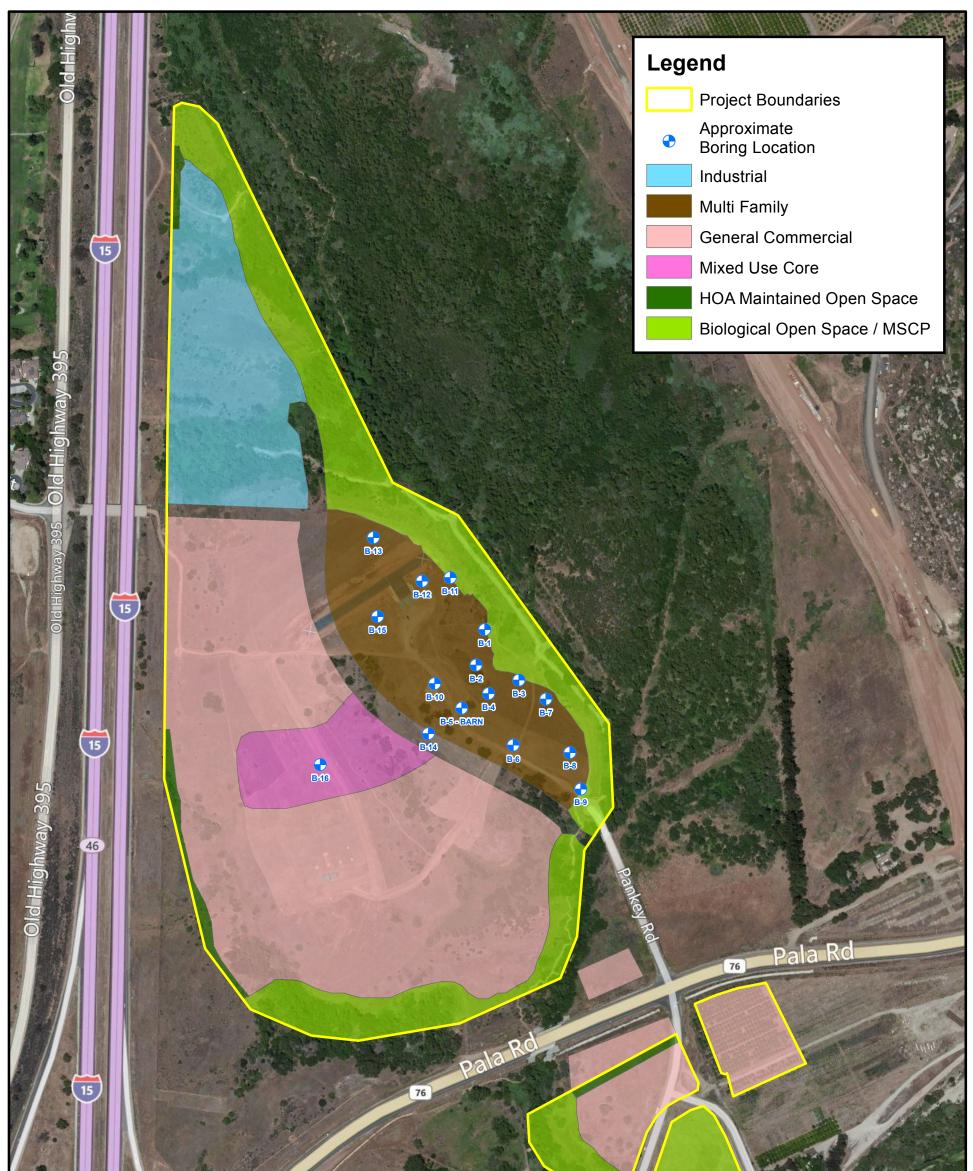
Respectfully submitted,

Gwen Tellegen, PE C58760 Principal Environmental Engineer LEIGHTON AND ASSOCIATES, INC.

Attachments: Figure 1 – Site Location Map Figure 2 – Boring Location Map

Table 1 – Summary of Organochlorine Pesticide and TPH Analytical Results


Table 2 – Summary of ProUCL Results


Appendix A – References Appendix B – Associated Laboratories Reports Appendix C – ProUCL Datasheet

Distribution: (1) Addressee

(2) Beth Ehsan – SD-DPLU Hazard Specialist (1), Project Manager (1)

				Sheater Grassing	
N				THE SAL	
		1 PANA	Line and the second	A State State	6. 2
•	4.1	CHAIF		adfine	12 1
				an luis	111.5
0 410	820			in Roy	
Feet		Park		AN DE	
Proiect: 042410-004	Eng/Geol: GAT/BCP				Figure 2

Project: 042410-004Eng/Geol: GAT/BCPScale: 1 " = 400 'Date: November, 2012Base Map: Microsoft Bing 2012
Thematic Info: Leighton

Author: Leighton Geomatics (cgiovando)

BORING LOCATION MAP

Limited Phase II Environmental Site Assessment Campus Park West, San Diego County, California

Map Saved as V:\drafting\042410\004\Maps\P042410-004_F02_BoringLocationMap_GIS_2012-11-05.mxd on 11/6/2012 9:29:31 AM

		Table	1: Summa					nalytical Result	S	
					Park West n Diego Co		hase II ESA			
			FPA 80		ochlorine F		Ionna	F	PA 8015 TPHcc	id
Sample	Date	Depth	4,4'-DDD	4,4'-DDE	4,4'-DDT		Chlordane	TPH (C6 -C10)	TPH (C10 -	TPH (C22 -
Campie	Date	(ft. bgs)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	C22) (mg/Kg)	C36) (mg/Kg)
B-1-0.5'	10/1/2012	0.5	< 0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-1-3'	10/1/2012	3	<0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-2-0.5'	10/1/2012	0.5	< 0.005	<0.004	<0.005	< 0.003	< 0.025			
B-2-2'	10/1/2012	2	< 0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-3-0.5'	10/1/2012	0.5	< 0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-3-2.5'	10/1/2012	2.5	<0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-4-0.5'	10/1/2012	0.5	0.0060	0.063	0.051	0.020	<0.025			
B-4-2'	10/1/2012	2	<0.005	0.013	0.011	0.073	< 0.025			
B-5-Barn-0.5'	10/1/2012	0.5	<0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-5-Barn-2.5'	10/1/2012	2.5	<0.005	<0.004	< 0.005	< 0.003	< 0.025			
B-6-0.5'	10/1/2012	0.5	<0.005	0.011	0.011	< 0.003	<0.025			
B-6-2'	10/1/2012	2	<0.005	0.013	< 0.005	0.0099	<0.025			
B-7-0.5'	10/1/2012	0.5	< 0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-7-2'	10/1/2012	2	<0.005	<0.004	< 0.005	< 0.003	< 0.025			
B-8-0.5'	10/1/2012	0.5	<0.005	<0.004	< 0.005	< 0.003	< 0.025			
B-8-2.5'	10/1/2012	2.5	<0.005	<0.004	<0.005	<0.003	< 0.025			
B-9-0.5'	10/1/2012	0.5	<0.005	0.016	< 0.005	< 0.003	< 0.025			
B-9-3'	10/1/2012	3	<0.005	0.020	< 0.005	< 0.003	< 0.025			
B-10-0.5'	10/1/2012	0.5	0.013	0.0053	0.035	0.036	0.059	<3.0	50.4	168
B-10-2'	10/1/2012	2	< 0.005	<0.004	< 0.005	<0.003	< 0.025	<3.0	<3.0	<5.0
B-12-0.5'	10/24/2012	0.5	<0.005	0.0090	0.0076	< 0.003	0.094			
B-12-3'	10/24/2012	3	<0.005	< 0.004	< 0.005	< 0.003	< 0.025			
B-13-0.5'	10/24/2012	0.5	<0.005	<0.004	< 0.005	< 0.003	< 0.025			
	10/24/2012	2	<0.005	<0.004	<0.005	<0.003	< 0.025			
	10/25/2012	0.5	<0.005	<0.004	<0.005	<0.003	< 0.025			
	10/25/2012	2	<0.005	<0.004	<0.005	<0.003	<0.025			
	10/25/2012	0.5	<0.005	<0.004	<0.005	<0.003	<0.025			
	10/25/2012	2.5	<0.005	<0.004	<0.005	<0.003	<0.025			
95% UCL						0.0181				
CHHSLs			2.4	1.7	1.7	0.035	0.44			
ESLs								83	83	370

Notes:

mg/Kg = milligrams per kilogram ft. bgs = feet below ground surface

95% UCL = 95 % Upper Confidence Level of the mean

CHHSLs = California Human Health Screening Levels (OEHHA) for Residential Use, updated September 23, 2010 ESLs = California Regional Water Quality Contol Board - San Francisco Bay Region Environmental Screening Levels, revised May, 2008

<0.005 = Concentration below Laboratory Detection Limits

-- = Not applicable or not analyzed

Table 2: Summary of ProUCL Results Campus Park West San Diego County, California Data Distribution Test with Detected Values Only									
Data appear Normal at 5% Significance Level Nonparametric Statistics									
Kaplan-Meier (KM) Method									
Mean	0.0134								
Standard Deviation	0.0126								
Standard Error of Mean	0.00274								
95% KM (t) UCL	0.0181								
95% KM (z) UCL	0.018								
95% KM (jackknife) UCL	0.0203								
95% KM (bootstrap t) UCL	0.019								
95% KM (BCA) UCL	0.0386								
95% KM (Percentile Bootstrap) UCL	0.0386								
95% KM (Chebyshev) UCL	0.0254								
97.5% KM (Chebyshev) UCL	0.0306								
99% KM (Chebyshev) UCL	0.0407								
Potential UCLs to Use									
95% KM (t) UCL	0.0181								
95% KM (Percentile Bootstrap) UCL	0.0386								

APPENDIX A

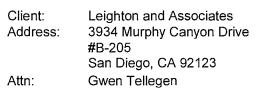
REFERENCES

REFERENCES

- California Regional Water Quality Control Board San Francisco Bay Region (SFRWQCB), 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, dated November 2007 (Revised May 2008).
- County of San Diego Department of Planning and Land Use (SD-DPLU), Hazardous Materials Review of Campus Park West; ER 05-02-009, dated August 27, 2010.
- Leighton and Associates (Leighton), 2009, Revised Phase I Environmental Site Assessment (Assessment) Report, Campus Park West, Assessor's Parcel Numbers (APNs) 108-121-14, 125-161-01, 125-163-01, 125-163-07, 125-161-08, San Diego County, California 92028, dated September 11, 2009 (Updated October 17, 2012).
- State of California Office of Environmental Health Hazard Assessment (OEHHA), 2010, California Human Health Screening Levels (CHHSLs), Table 1: Soil Screening Numbers (mg/Kg Soil) Soil Screening Numbers for Nonvolatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingerstion, and Dermal Absorption, Updated September 23, 2010.

United States Environmental Protection Agency (EPA), ProUCL, Version 4.1, 2011.

APPENDIX B


ASSOCIATED LABORATORIES ANALYTICAL REPORT

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Comments: P.O. #042410-004 Campus Park West I-15 & CA-79, San Diego County

Lab Request: 311402 Report Date: 10/16/2012 Date Received: 10/02/2012

Client ID: 14085

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID	Sample #	Client Sample ID
311402-001	B-1-0.5'	311402-018	B-9-3'
311402-002	B-1-3'	311402-019	B-10-0.5'
311402-003	B-2-0.5'	311402-020	B-10-2'
311402-004	B-2-2'		
311402-005	B-3-0.5'		
311402-006	B-3-2.5'		
311402-007	B-4-0.5'		
311402-008	B-4-2'		
311402-009	B-5-Barn-0.5'		
311402-010	B-5-Barn-2.5'		
311402-011	B-6-0.5'		
311402-012	B-6-2'		
311402-013	B-7-0.5'		
311402-014	B-7-2'		
311402-015	B-8-0.5'		
311402-016	B-8-2.5'		
311402-017	B-9-0.5'		

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED)ABORATORIES by, wheel & Schle (for)

Edward S. Behare, Ph.D. Lab Director

NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Matrix: Solid	Client: Leighton and	Associates	Collector: Client	2
Sampled: 10/01/2012 10:08	Site:		Notes:	
Sample #: 311402-001	Client Sample #: B-1-0.5'			

Analyte	Resul	t DF	R	DL	Units	Analyzed	By I	lotes
lethod: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchID	: QC1130357
4,4'-DDD	ND	1	0.0	005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1	0.0	005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	0.0	002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1	0.0	003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1	0.0	025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1	0.(005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	0.0	003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1	0.0	005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1	0.0	004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1	0.0	003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1	0.0	003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1	0.0	025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1	٥).25	mg/K g	10/06/12	qnguyen	
<u>Analyte</u>	<u>% Reco</u>	very	Limits	<u>1</u>	<u>Votes</u>			
Decachlorobiphenyl DCB (S	UR) 121		39-149					
Tetrachloro-m-xylene TCMX	(SUR) 122		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report

Matrix: Solid		Leighton and A	ssociates		² 95 ₆		or: Client		
Sampled: 10/01/2012 10:12 Sample #: 311402-002	Site: Client Sample #:	B-1-3'				Note	es:		
Analyte		Result	DF	F	RDL	Units	Analyzed	By	Notes
Method: EPA 8081 NELAC	Prep Method: EPA					·····			D: QC1130357
4,4'-DDD		ND	1	0	.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0	.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	0	.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	0	.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0	.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0	.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	0	.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Endrin	********************************	ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	0	.005	mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	0	.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	0	.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1	0	.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1	0	.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte		<u>% Recover</u>	¥.	Limits	<u> </u>	Notes			
Decachlorobiphenyl DCB (SUR)	•	100		39-149					
Tetrachloro-m-xylene TCMX (SU	UR)	119		50-125					

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 3 of 21

Matrix: Solid	Client:	Leighton and A	ssociates	5		Collect	or: Client	1	
Sampled: 10/01/2012 10:16	Site:					Not	es:		
Sample #: <u>311402-003</u>	Client Sample #:	B-2-0.5'							
Analyte		Result	DF		RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545						QCBatchi	D: QC1130357
4,4'-DDD		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	(0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte		<u>% Recovery</u>	r -	Limits		Notes			
Decachlorobiphenyl DCB (SUR))	114		39-149					
Tetrachloro-m-xylene TCMX (S	UR)	123		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 4 of 21
 Matrix:
 Solid
 Client:
 Leighton and Associates
 Collector:
 Client

 Sampled:
 10/01/2012 10:27
 Site:
 Notes:

 Sample #:
 311402-004
 Client Sample #:
 B-2-2'

Analyte	Result	DF		RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchl	D: QC1130357
4,4'-DDD	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	(0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1		0.003	mg/Kg	10/06/12	qnguyen	****
Lindane (Gamma-BHC)	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recove</u>	ry	Limits		Notes			
Decachlorobiphenyl DCB (SU	'R) 104		39-149					
Tetrachloro-m-xylene TCMX ('SUR) 117		50-125					

ND = Not Detected or < RDL

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 5 of 21

Matrix: Solid	Client: Leighton	and Associates	Collector: Client	1344 4	
Sampled: 10/01/2012 10:32	Site:		Notes:		
Sample #: 311402-005	Client Sample #: B-3-0.5'		이 이 가격 이상 확인.		

						<u>i i i i i i i i i i i i i i i i i i i </u>		
Analyte	Result	DF		RDL	Units	Analyzed	By N	otes
Method: EPA 8081 NELAC Prep Metho	d: EPA 3545						QCBatchID:	QC1130357
4,4'-DDD	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1		0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recover</u>	Y	Limits		<u>Notes</u>			
Decachlorobiphenyl DCB (SUR)	112		39-149					
Tetrachloro-m-xylene TCMX (SUR)	128		50-125	S				

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 6 of 21

Matrix: Solid	Client:	Leighton and A	Associates	i.,	Collec	tor: Client		
Sampled: 10/01/2012 10:35	Site:				No	tes:		
Sample #: <u>311402-006</u>	Client Sample #:	B-3-2.5'						
Analyte		Result	DF	RD	L Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545					QCBatchl	D: QC1130357
4,4'-DDD		ND	1	0.00)5 mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1	0.00)4 mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0.00)5 mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	0.00)4 mg/Kg	10/06/12	qnguyen	
Aldrin		ND	.1	0.00)2 mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	0.00)3 mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0.02	25 mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0.00)5 mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	0.00)3 mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0.00)4 mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0.00	04 mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0.00)4 mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	0.00	04 mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	0.00	04 mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	0.00)5 mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	0.00)4 mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	0.00)3 mg/Kg	10/06/12	qnguyen	***************************************
Lindane (Gamma-BHC)		ND	1	0.00)3 mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1	0.02	25 mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1	0.2	25 mg/Kg	10/06/12	qnguyen	
Analyte		% Recover	Y	Limits	Notes			
Decachlorobiphenyl DCB (SUR)		94		39-149				
Tetrachloro-m-xylene TCMX (SU	JR)	113		50-125				

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 7 of 21

Matrix: Solid	Client:	Leighton and	Associates	8	Collec	tor: Client	
Sampled: 10/01/2012 10:42	Site:				Not	tes:	
Sample #: <u>311402-007</u>	Client Sample #:	B-4-0.5'	, : 		2	i k t i	
Analyte		Result	DF	RDI	L Units	Analyzed	By Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545					QCBatchID: QC1130357
4,4'-DDD		0.0060	1	0.00	5 mg/Kg	10/06/12	qnguyen
4,4'-DDE		0.063	1	0.00	4 mg/Kg	10/06/12	qnguyen
4,4'-DDT		0.051	1	0.00	5 mg/Kg	10/06/12	qnguyen
a-BHC		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Aldrin		ND	1	0.00	2 mg/Kg	10/06/12	qnguyen
b-BHC		ND	1	0.00	3 mg/Kg	10/06/12	qnguyen
Chlordane (technical)		ND	1	0.02	5 mg/Kg	10/09/12	qnguyen
d-BHC		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen
Dieldrin		0.020	1	0.00	3 mg/Kg	10/06/12	qnguyen
Endosulfan I		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Endosulfan II	*********	ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Endosulfan sulfate		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Endrin		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Endrin aldehyde		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Endrin Ketone		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen
Heptachlor		ND	1	0.00	4 mg/Kg	10/06/12	qnguyen
Heptachlor epoxide		ND	1	0.00	3 mg/Kg	10/06/12	qnguyen
Lindane (Gamma-BHC)		ND	1	0.00	3 mg/Kg	10/06/12	qnguyen
Methoxychlor		ND	1	0.02	5 mg/Kg	10/06/12	qnguyen
Toxaphene		ND	1	0.2	5 mg/Kg	10/06/12	qnguyen
Analyte		% Recover	ry	Limits	Notes		
Decachlorobiphenyl DCB (SUR,)	104		39-149			
Tetrachloro-m-xylene TCMX (S	UR)	122		50-125			

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 8 of 21

Matrix: Solid	Client: Lei	ighton and Associates	Collector:	Client	
Sampled: 10/01/2012 10:46	Site:		Notes:		
Sample #: <u>311402-008</u>	onent oumpie #. D	4-2'			λ.

Analyte	Result	DF		RDL	Units	Analyzed	By I	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545							: QC1130357
4,4'-DDD	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	0.013	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	0.011	1		0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1		0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	0.073	1		0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recover</u>	У	Limits		Notes			
Decachlorobiphenyl DCB (SU	R) 101		39-149					
Tetrachloro-m-xylene TCMX (SUR) 119		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 9 of 21

Matrix:	Solid	Client:	Leighton and Associates	Collector:	Client	2 	
Sampled:	10/01/2012 11:01	Site:		Notes:			
Sample #:	311402-009	Client Sample #:	B-5-Barn-0.5'				

Analyte	Result	DF	ŀ	RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchl	D: QC1130357
4,4'-DDD	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	***************
4,4'-DDT	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	********************
a-BHC	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	(0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	% Recove	ry	Limits		Notes			
Decach/orobiphenyl DCB (SU	IR) 96		39-149					
Tetrachloro-m-xylene TCMX	(SUR) 121		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 10 of 21

Matrix: Solid	Client:	Leighton and As	ssociates	Collector: Client	 	5
Sampled: 10/01/2012 11:07	Site:			Notes:		
Sample #: <u>311402-010</u>	Client Sample #:	B-5-Barn-2.5'				

Analyte	Result	DF		RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC Prep Method: EF	PA 3545						QCBatchI): QC1130357
4,4'-DDD	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1		0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	% Recover	Y	Limits		Notes			
Decachlorobiphenyl DCB (SUR)	112		39-149					
Tetrachloro-m-xylene TCMX (SUR)	120		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 11 of 21 Matrix: SolidClient: Leighton and AssociatesCollector: ClientSampled: 10/01/2012 11:44Site:Notes:Sample #: 311402-011Client Sample #: B-6-0.5'Notes:

Analyte	Result	DF	F	RDL	Units	Analyzed	By	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchIE): QC1130357
4,4'-DDD	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	0.011	1	(0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	0.011	1	(0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	(0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recover</u>	Y	Limits		Notes			
Decachlorobiphenyl DCB (SUR)	113		39-149					
Tetrachloro-m-xylene TCMX (SL	IR) 124		50-125					

ND = Not Detected or < RDL

RDL = Reporting Detection Limit DI

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 12 of 21

Matrix: Solid	Client:	Leighton and A	ssociates		Collec	tor: Client		
Sampled: 10/01/2012 11:49 Sample #: <u>311402-012</u>	Site: Client Sample #:	B-6-2'			Not	es:		
Analyte		Result	DF	RDL	. Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545					QCBatchl	D: QC1130357
4,4'-DDD		ND	1	0.005	5 mg/Kg	10/06/12	qnguyen	
4,4'-DDE		0.013	1	0.004	t mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0.005	5 mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	0.004	l mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	0.002	2 mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	0.003	3 m g /Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0.025	5 mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0.005	5 mg/Kg	10/06/12	qnguyen	
Dieldrin		0.0099	1	0.003	3 mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	0.005	5 mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	0.004	↓ mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	0.003	8 mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1	0.003	8 mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1	0.025	5 m g /Kg	10/06/12	qnguyen	
Toxaphene		ND	1	0.25	5 mg/Kg	10/06/12	qnguyen	
Analyte		<u>% Recover</u>	Y	Limits	Notes			
Decachlorobiphenyl DCB (SUR)		103		39-149				
Tetrachloro-m-xylene TCMX (SU	R)	113		50-125				

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 13 of 21

Matrix: Solid	Client:	Leighton and	Associates		Collec	tor: Client		
Sampled: 10/01/2012 11	:56 Site:	an shingan sa			No	tes:		
Sample #: <u>311402-013</u>	Client Sample #:	B-7-0.5'			17			
Analyte		Result	DF	RDL	. Units	Analyzed	By N	lotes
ethod: EPA 8081 NELAC	Prep Method: EPA	3545					QCBatchID	: QC1130357
4,4'-DDD		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1	0.004	1 mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	0.004	1 mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	0.002	2 mg/Kg	10/06/12	qnguyen	· ·
b-BHC	*********	ND	1	0.003	3 mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0.02	5 mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	0.003	3 mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0.004	l mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0.004	1 mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0.004	4 mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	0.004	1 mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	0.004	1 mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	0.00	5 mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	0.004	l mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	0.00	3 mg/Kg	10/06/12	qnguyen	

1

1

1

Limits

39-149

50-125

0.003

0.025

0.25

S

mg/Kg

mg/Kg

mg/Kg

Notes

ND

ND

ND

% Recovery

108

127

ND = Not Detected or < RDL

Methoxychlor

Toxaphene

Analyte

Lindane (Gamma-BHC)

Decachlorobiphenyl DCB (SUR)

Tetrachloro-m-xylene TCMX (SUR)

RDL = Reporting Detection Limit

10/06/12

10/06/12

10/06/12

qnguyen

qnguyen

qnguyen

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 14 of 21

Matrix: Solid Sampled: 10/01/2012 12:02	Client: Site:	Leighton and A	ssociates			Collector: Client Notes:		
Sample #: <u>311402-014</u>	Client Sample #:	B-7-2'			1	: "	a' i	
Analyte		Result	DF	RDL	Units	Analyzed	By	Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545					QCBatchl	D: QC1130357
4,4'-DDD		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	**********************	ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1	0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1	0.25	mg/Kg	10/06/12	qnguyen	
Analyte		<u>% Recovery</u>	<u>_</u>	Limits	<u>Notes</u>			
Decachlorobiphenyl DCB (SUR)		109	3	39-149				
Tetrachloro-m-xylene TCMX (SU	'R)	122	5	50-125				

ASSOCIATED LABORATORIES

RDL = Reporting Detection Limit

Matrix: Solid	Client:	Leighton and A	ssociates	e e e e e e e e e e e e e e e e e e e	Ś., .,		or: Client		
Sampled: 10/01/2012 12:19	Site:					Not	es:		
Sample #: <u>311402-015</u>	Client Sample #:	B-8-0.5'	1994 1997	n Agus		;	:	i	
Analyte		Result	DF	F	RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA	3545						QCBatchl	D: QC1130357
4,4'-DDD		ND	1	C	0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	C	0.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	C	0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	C	0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	C	0.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	C	0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	C	0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Endrin		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1	C	0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1	C	0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1	C	0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1	C	0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1	C	0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte		% Recover	¥	Limits		Notes			
Decachlorobiphenyl DCB (SUR)	l i	97		39-149					
Tetrachloro-m-xylene TCMX (SI		118		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 16 of 21

Matrix: Solid	Client:	Leighton and Associates	Collector: Client		
Sampled: 10/01/2012 12	2:26 Site:		Notes:		
Sample #: <u>311402-016</u>	Client Sample #:	B-8-2.5'			

Analyte	Result	DF	R	RDL	Units	Analyzed	Ву	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchil	D: QC1130357
4,4'-DDD	ND	1	0.	.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1	0.	.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	0.	.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1	0.	.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1	0.	.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1	0.	.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	0.	.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1	0.	.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1	0.	.004	mg/Kg	10/06/12	qnguyen	*********
Heptachlor epoxide	ND	1	0.	.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1	0.	.003	mg/Kg	10/06/12	qnguyen	~~~~~~
Methoxychlor	ND	1	0.	.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recove</u>	ry	Limits		Notes			
Decachlorobiphenyl DCB (SU	IR) 111		39-149					
Tetrach/oro-m-xy/ene TCMX	(SUR) 95		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 17 of 21

Matrix: Solid	Client: Leighton a	nd Associates	Collector:	Client	
Sampled: 10/01/2012 12:35	Site:		Notes:		
Sample #: <u>311402-017</u>	Client Sample #: B-9-0.5'	a da anti-		1.1	

Analyte	Result	DF	F	RDL	Units	Analyzed	By I	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchID	: QC1130357
4,4'-DDD	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	0.016	1	(0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
a-BHC	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Aldrin	ND	1	(0.002	mg/Kg	10/06/12	qnguyen	
b-BHC	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
d-BHC	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone	ND	1	(0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	ND	1	(0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)	ND	1	(0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor	ND	1	(0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene	ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte	<u>% Recove</u>	ry	Limits		Notes			
Decachlorobiphenyl DCB (SUF	R) 130		39-149					
Tetrachloro-m-xylene TCMX (S	SUR) 105		50-125					

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 18 of 21

Matrix: Solid	Client: Leighton and Associates					tor: Client		
Sampled: 10/01/2012 12:40	Site:				Notes:			
Sample #: <u>311402-018</u>	Client Sample #:	B-9-3'	5				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
Analyte		Result	DF	RDL	Units	Analyzed	Ву	Notes
ethod: EPA 8081 NELAC	Prep Method: EPA 3	3545					QCBatch	ID: QC1130357
4,4'-DDD		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	*************************	0.020	1	0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1	0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1	0.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1	0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1	0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1	0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1	0.004	mg/Kg	10/06/12	qnguyen	

1

1

1

1

1

Limits

39-149

50-125

0.004

0.004

0.005

0.004

0.003

0.003

0.025

0.25

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

<u>Notes</u>

10/06/12

10/06/12

10/06/12

10/06/12

10/06/12

10/06/12

10/06/12

10/06/12

qnguyen

qnguyen

qnguyen

qnguyen

qnguyen

qnguyen

qnguyen

qnguyen

ND

ND

ND

ND

ND

ND

ND

ND

93

89

% Recovery

ND = Not Detected or < RDL

Endrin

Endrin aldehyde

Heptachlor epoxide

Lindane (Gamma-BHC)

Decachlorobiphenyl DCB (SUR)

Tetrachloro-m-xylene TCMX (SUR)

Endrin Ketone

Heptachlor

Methoxychlor

Toxaphene

Analyte

RDL = Reporting Detection Limit

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 19 of 21

Matrix: Solid		Leighton and As	ssociates	3	1. N		or: Client		
Sampled: 10/01/2012 12:58	Site:					Not	es:		
Sample #: <u>311402-019</u>	Client Sample #:	B-10-0.5'					<u></u>		
Analyte		Result	DF		RDL	Units	Analyzed	By	Notes
Method: EPA 8015 NELAC	Prep Method: EPA	3545						QCBatch	D: QC1130527
TPH (C6 to C10)		ND	1		3	mg/Kg	10/15/12	anca	
TPH (C10 to C22)		50.4	1		3	mg/Kg	10/15/12	anca	
TPH (C22 to C36)		168	20		100	mg/Kg	10/15/12	anca	
Analyte		% Recovery		Limits		Notes			*****
Triacontane (SUR)		380		60-140	S				
Method: EPA 8081 NELAC	Prep Method: EPA	3545						QCBatch	D: QC1130357
4,4'-DDD		0.013	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE		0.0053	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT		0.035	1		0.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1		0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		0.059	1		0.025	mg/Kg	10/09/12	qnguyen	
d-BHC		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		0.036	1		0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide	*******	ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte		<u>% Recovery</u>		Limits		Notes			
Decachlorobiphenyl DCB (SUR)	121		39-149					
Tetrachloro-m-xylene TCMX (S	UR)	92		50-125					

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 20 of 21

Matrix: Solid	Client:	Leighton and As	sociate	es	· · · ·	Collect	or: Client	1. 51	
Sampled: 10/01/2012 13:0	7 Site:					Not	es:		
Sample #: <u>311402-020</u>	Client Sample #:	B-10-2'							l da la construcción de la constru La construcción de la construcción d
Analyte		Result	DF		RDL	Units	Analyzed		Notes
ethod: EPA 8015 NELAC	Prep Method: EPA 3	545						QCBatchID	: QC1130527
TPH (C6 to C10)		ND	1		3	mg/Kg	10/15/12	anca	
TPH (C10 to C22)		ND	1		3	mg/Kg	10/15/12	anca	
TPH (C22 to C36)		ND	1		5	mg/Kg	10/15/12	anca	
Analyte		% Recovery		<u>Limits</u>		Notes			
Triacontane (SUR)		89		60-140					
ethod: EPA 8081 NELAC	Prep Method: EPA 3	545						QCBatchID	: QC1130357
4,4'-DDD		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
4,4'-DDE	*****************************	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
4,4'-DDT	*****	ND	1		0.005	mg/Kg	10/06/12	qnguyen	
a-BHC		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Aldrin		ND	1		0.002	mg/Kg	10/06/12	qnguyen	
b-BHC		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Chlordane (technical)		ND	1		0.025	mg/Kg	10/06/12	qnguyen	
d-BHC		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Dieldrin		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Endosulfan I		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan II		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endosulfan sulfate		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin aldehyde		ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Endrin Ketone		ND	1		0.005	mg/Kg	10/06/12	qnguyen	
Heptachlor	******	ND	1		0.004	mg/Kg	10/06/12	qnguyen	
Heptachlor epoxide		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Lindane (Gamma-BHC)		ND	1		0.003	mg/Kg	10/06/12	qnguyen	
Methoxychlor		ND	1		0.025	mg/Kg	10/06/12	qnguyen	
Toxaphene		ND	1		0.25	mg/Kg	10/06/12	qnguyen	
Analyte		% Recovery		Limits		Notes			

Decachlorobiphenyl DCB (SUR)

Tetrachloro-m-xylene TCMX (SUR)

39-149

50-125

96

91

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 311402 Page 21 of 21

QCBatchID: QC1130357

Analyst: LeiRen

Method: EPA 8081A

Ma	trix:	Solid	

Analyzed: 10/06/2012

Instrument: SVOA-GC2

	Rla	nk Summary			
		ik Sullillary			
	Blank				
Analyte	Result	Units	RDL	Notes	
QC1130357MB1					
4,4'-DDD	ND	mg/Kg	0.005		
4,4'-DDE	ND	mg/Kg	0.004		
4,4'-DDT	ND	mg/Kg	0.005		
a-BHC	ND	mg/Kg	0.004		
Aldrin	ND	mg/Kg	0.002		
b-BHC	ND	mg/Kg	0.003		
Chlordane (technical)	ND	mg/Kg	0.025		
d-BHC	ND	mg/Kg	0.005		
Dieldrin	ND	mg/Kg	0.003		
Endosulfan I	ND	mg/Kg	0.004		
Endosulfan II	ND	mg/Kg	0.004		
Endosulfan sulfate	ND	mg/Kg	0.004		
Endrin	ND	mg/Kg	0.004		
Endrin aldehyde	ND	mg/Kg	0.004		
Endrin Ketone	ND	mg/Kg	0.005		
Heptachlor	ND	mg/Kg	0.004		
Heptachlor epoxide	ND	mg/Kg	0.003		
Lindane (Gamma-BHC)	ND	mg/Kg	0.003		
Methoxychlor	ND	mg/Kg	0.025		
Toxaphene	ND	mg/Kg	0.25		

	Calles Americat	Calles Desult		Recoveries	[Limits		
	Spike Amount	Spike Result				1		
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec F	RPD	Notes
QC1130357LCS1								
4,4'-DDE	0.1	0.12	mg/Kg	120		70-130		
4,4'-DDT	0.1	0.13	mg/Kg	130		55-130		
a-BHC	0.1	0.13	mg/Kg	130		70-130		
Aldrin	0.1	0.11	mg/Kg	110		55-130		
b-BHC	0.1	0.12	mg/Kg	120		70-130		
d-BHC	0.1	0.12	mg/Kg	120		70-130		
Dieldrin	0.1	0.12	mg/Kg	120		76-151		
Endosulfan I	0.1	0.12	mg/Kg	120		70-130		
Endosulfan II	0.1	0.11	mg/Kg	110		70-130		
Endosulfan sulfate	0.1	0.10	mg/Kg	100		70-130		
Endrin	0.1	0.096	mg/Kg	96		55-130		
Endrin aldehyde	0.1	0.13	mg/Kg	130		70-130		
Heptachlor	0.1	0.13	mg/Kg	130		55-130		
Heptachlor epoxide	0.1	0.13	mg/Kg	130		70-130		
Lindane (Gamma-BHC)	0.1	0.13	mg/Kg	130		55-130	* * * * * * *	
Methoxychlor	0.1	0.079	mg/Kg	79		70-130		

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

QCBatchID: QC1130357	Analyst:	LeiRen		M	ethod:	EPA 8081A						
Matrix: Solid	Analyzed:	10/06/2	012	Instru	ument:	SVOA-GC2			н			
	Mat	rix Spi	ke/Mat	rix Spil	ce Dup	licate Sun	nmary					
	Sample	Spike A	Amount	Spike	Result		Reco	overies		Limit	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1130357MS1, QC1130357MSD1										Sc	urce:	311402-002
4,4'-DDE	ND	0.1	0.1	0.10	0.11	mg/Kg	100	110	9.5	70-130	35	
4,4'-DDT	ND	0.1	0.1	0.12	0.13	mg/Kg	120	130	8.0	50-135	35	
a-BHC	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	70-130	35	
Aldrin	ND	0.1	0.1	0.099	0.11	mg/Kg	99	110	10.5	50-135	35	
b-BHC	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	70-130	35	
d-BHC	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
Dieldrin	ND	0.1	0.1	0.10	0.11	mg/Kg	100	110	9.5	76-151	35	
Endosulfan I	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	70-130	35	
Endosulfan II	ND	0.1	0.1	0.097	0.11	mg/Kg	97	110	12.6	70-130	35	
Endosulfan sulfate	ND	0.1	0.1	0.091	0.092	mg/Kg	91	92	1.1	70-130	35	
Endrin	ND	0.1	0.1	0.12	0.13	mg/Kg	120	130	8.0	50-135	35	
Endrin aldehyde	ND	0.1	0.1	0.12	0.13	mg/Kg	120	130	8.0	70-130	35	
Heptachlor	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	50-135	35	
Heptachlor epoxide	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	70-130	35	
Lindane (Gamma-BHC)	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	50-135	35	
Methoxychlor	ND	0.1	0.1	0.13	0.13	mg/Kg	130	130	0.0	70-130	35	

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

QCBatchID: <u>QC1130527</u> Matrix: Solid	Analyst: anca Analyzed: 10/12/2012		thod: EPA 8 nent: SVOA	015B -GC (group)					
		Blank Sun						· · · · ·	
Analyte	Blank Result			R	DL	No	otes		
QC1130527MB1	· ·								
TPH (C10 to C22)	N	D mg/	Kg		3				
TPH (C22 to C36)	N	D mg/	Kg		5				
TPH (C6 to C10)	N	D mg/	Kg		3				
TPH Diesel	N	D mg/	Kg	· · · · · · · · · ·	1				
La	b Control Spike/ La	ab Control	Spike Du	plicate Su	mmary			· · ·	- - -
	Spike Amount	Spike R	lesult	Rec	overies		Limi	ts	
Analyte	LCS LCSE	LCS	LCSD L	Inits LCS	LCSD	RPD	%Rec	RPD	Notes
QC1130527LCS1, QC1130527LCSD1									
TPH Diesel	25 25	18.1	23.6 m	g/Kg 72	94	26	70-130	30	

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

Notes and Definitions

В	Analyte was present in an associated method blank. Associated sample data was reported with qualifier.
С	Laboratory Contamination.
D	The sample duplicate RPD was not within control limits, the sample data was reported without further clarification.
DF	Dilution Factor
DW	Sample result is calculated on a dry weigh basis
J	Reported value is estimated
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.
М	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
MDL	Method Detection Limit
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
ND	Analyte was not detected or was less than the detection limit.
Р	Sample was received without proper preservation according to EPA guidelines.
RDL	Reporting Detection Limit
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
Т	Sample was extracted/analyzed past the holding time.

Danielle Roberts

From: Brian Pierce [bpierce@leightongroup.com]

Sent: Wednesday, October 17, 2012 9:59 AM

To: Danielle Roberts

Subject: RE: Campus Park West Additional Analysis (Lab# 311402)

Hi Danielle,

Do we have any results on the additional analyses?

Thanks,

Brian Pierce Staff Geologist Leighton and Associates 3934 Murphy Canyon Road, B205 San Diego, California 92123 Telephone: (858) 300-8495 Cell: (619) 666-5800 Fax: (858) 292-0771 bpierce@leightongroup.com

Please don't print this e-mail unless you really need to.

From: Danielle Roberts [mailto:droberts@associatedlabs.com]
Sent: Thursday, October 11, 2012 4:56 PM
To: Brian Pierce
Subject: RE: Campus Park West Additional Analysis (Lab# 311402)

Hi Brian, I will add the additional analysis

Danielle Roberts Associated Laboratories <u>droberts@associatedlabs.com</u>

From: Brian Pierce [mailto:bpierce@leightongroup.com]
Sent: Thursday, October 11, 2012 4:44 PM
To: Danielle Roberts
Cc: Gwen Tellegen
Subject: Campus Park West Additional Analysis (Lab# 311402)

Hi Danielle,

In preparing my report for the Campus Park West project I realized the TPH may be a concern in one of the sample locations. Can you please run samples B-10-0.5' (311402-019) and B-10-2' (311402-020) for 8015 TPHccid?

Thanks,

Nataliya Afendikova

From: Danielle Roberts [droberts@associatedlabs.com]

Sent: Thursday, October 11, 2012 4:59 PM

To: 'Greg Hess'

Cc: nafendikova@associatedlabs.com

Subject: 311402

.

Please add to 311402-019 and -020 8015 CC. Thanks

Danielle Roberts Project Manager Associated Laboratories 806 N. Batavia Orange, CA 92868 <u>droberts@associatedlabs.com</u> Tel 714-771-6900 Cell 714-920-5157

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Lab Request: 312626 Report Date: 11/02/2012 Date Received: 10/24/2012

Client ID: 14085

Client: Leighton and Associates Address: 3934 Murphy Canyon Drive #B-205 San Diego, CA 92123 Attn: Gwen Tellegen

Comments: #042410-004 Campus Park West I-15 & CA-76, San Diego County, CA

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #Client Sample ID312626-003B-12-0.5'312626-004B-12-3'312626-005B-13-0.5'312626-006B-13-2'

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED ABORATORIES by,

h takk (for)

Edward S. Behare, Ph.D. Lab Director NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

Matrix: Solid	Clier	nt: Leighton and	I Associates	Collector: Client	
Sampled: 10/24/201	2 09:23 Sit	ie:		Notes:	
Sample #: <u>312626-00</u>	Client Sample	#: B-12-0.5'			

Analyte	Result	DF	F	RDL	Units	Analyzed	By	Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatch	ID: QC1130977
4,4'-DDD	ND	1	0	.005	mg/Kg	10/29/12	LeiRen	
4,4'-DDE	0.0090	1	0	.004	mg/Kg	10/29/12	LeiRen	
4,4'-DDT	0.0076	1	0	.005	mg/Kg	10/29/12	LeiRen	
a-BHC	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Aldrin	ND	1	0	.002	mg/Kg	10/29/12	LeiRen	
b-BHC	ND	1	0	.003	mg/Kg	10/29/12	LeiRen	
Chlordane (technical)	0.094	1	0	.025	mg/Kg	10/29/12	LeiRen	
d-BHC	ND	1	0	.005	mg/Kg	10/29/12	LeiRen	
Dieldrin	ND	1	0	.003	mg/Kg	10/29/12	LeiRen	
Endosulfan I	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Endosulfan II	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Endosulfan sulfate	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Endrin	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Endrin aldehyde	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Endrin Ketone	ND	1	0	.005	mg/Kg	10/29/12	LeiRen	
Heptachlor	ND	1	0	.004	mg/Kg	10/29/12	LeiRen	
Heptachlor epoxide	ND	1	0	.003	mg/Kg	10/29/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	0	.003	mg/Kg	10/29/12	LeiRen	
Methoxychlor	ND	1	0	.025	mg/Kg	10/29/12	LeiRen	
Toxaphene	ND	1		0.25	mg/Kg	10/29/12	LeiRen	
Analyte	<u>% Recover</u>	Y	Limits		Notes			
Decachlorobiphenyl DCB (SUR)	92		39-149					
Tetrachloro-m-xylene TCMX (SU	JR) 93		50-125					

Matrix: Solid	Client: Leighton and Associates	Collector: Client	
Sampled: 10/24/2012 09:27	Site:	Notes:	
Sample #: <u>312626-004</u>	Client Sample #: B-12-3'		An A

Analyte	Result	DF	RDL	Units	Analyzed	By N	otes
lethod: EPA 8081 NELAC	Prep Method: EPA 3545					QCBatchID:	QC1130977
4,4'-DDD	ND	1	0.005	mg/Kg	10/29/12	LeiRen	
4,4'-DDE	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
4,4'-DDT	ND	1	0.005	mg/Kg	10/29/12	LeiRen	
a-BHC	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Aldrin	ND	1	0.002	mg/Kg	10/29/12	LeiRen	
b-BHC	ND	1	0.003	mg/Kg	10/29/12	LeiRen	
Chlordane (technical)	ND	1	0.025	mg/Kg	10/29/12	LeiRen	
d-BHC	ND	1	0.005	mg/Kg	10/29/12	LeiRen	
Dieldrin	ND	1	0.003	mg/Kg	10/29/12	LeiRen	
Endosulfan I	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Endosulfan II	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Endosulfan sulfate	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Endrin	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Endrin aldehyde	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Endrin Ketone	ND	1	0.005	mg/Kg	10/29/12	LeiRen	
Heptachlor	ND	1	0.004	mg/Kg	10/29/12	LeiRen	
Heptachlor epoxide	ND	1	0.003	mg/Kg	10/29/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	0.003	mg/Kg	10/29/12	LeiRen	
Methoxychlor	ND	1	0.025	mg/Kg	10/29/12	LeiRen	
Toxaphene	ND	1	0.25	mg/Kg	10/29/12	LeiRen	
Analyte	% Recove	ry.	Limits	Notes			
Decachlorobiphenyl DCB (SUR)	101		39-149				
Tetrachloro-m-xylene TCMX (SL	IR) 102		50-125				

Matrix: SolidClient: Leighton and AssociatesCollector: ClientSampled: 10/24/2012 09:40Site:Notes:Sample #: 312626-005Client Sample #: B-13-0.5'

Analyte	Result	DF	RD	_ Units	Analyzed		Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545					QCBatchl	D: QC1130977
4,4'-DDD	ND	1	0.00	5 mg/Kg	10/29/12	LeiRen	
4,4'-DDE	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
4,4'-DDT	ND	1	0.00	5 mg/Kg	10/29/12	LeiRen	
a-BHC	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Aldrin	ND	1	0.00	2 mg/Kg	10/29/12	LeiRen	
b-BHC	ND	1	0.00	3 mg/Kg	10/29/12	LeiRen	
Chlordane (technical)	ND	1	0.02	5 mg/Kg	10/29/12	LeiRen	
d-BHC	ND	1	0.00	5 mg/Kg	10/29/12	LeiRen	
Dieldrin	ND	1	0.00	3 mg/Kg	10/29/12	LeiRen	
Endosulfan I	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Endosulfan II	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Endosulfan sulfate	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Endrin	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Endrin aldehyde	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Endrin Ketone	ND	1	0.00	5 mg/Kg	10/29/12	LeiRen	
Heptachlor	ND	1	0.00	4 mg/Kg	10/29/12	LeiRen	
Heptachlor epoxide	ND	1	0.00	3 mg/Kg	10/29/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	0.00	3 mg/Kg	10/29/12	LeiRen	
Methoxychlor	ND	1	0.02	5 mg/Kg	10/29/12	LeiRen	
Toxaphene	ND	1	0.2	5 mg/Kg	10/29/12	LeiRen	
Analyte	% Recove	ery	Limits	Notes			
Decachlorobiphenyl DCB (SU	R) 93		39-149				
Tetrachloro-m-xylene TCMX (SUR) 99		50-125				

ND = Not Detected or < RDL

 Matrix:
 Solid
 Client:
 Leighton and Associates
 Collector:
 Client

 Sampled:
 10/24/2012 09:45
 Site:
 Notes:

 Sample #:
 312626-006
 Client Sample #:
 B-13-2'

Analyte	Result	DF	RD	L Units	Analyzed		Notes
Method: EPA 8081 NELAC	Prep Method: EPA 3545					QCBatchl	D: QC1130977
4,4'-DDD	ND	1	0.0	05 mg/K	g 10/29/12	LeiRen	
4,4'-DDE	ND	1	0.0	04 mg/K	g 10/29/12	LeiRen	
4,4'-DDT	ND	1	0.0	05 mg/K	g 10/29/12	LeiRen	
a-BHC	ND	1	0.0	04 mg/K	g 10/29/12	LeiRen	
Aldrin	ND	1	0.0	02 mg/k	g 10/29/12	LeiRen	
b-BHC	ND	1	0.0	03 mg/K	g 10/29/12	LeiRen	
Chlordane (technical)	ND	1	0.0	25 mg/k	g 10/29/12	LeiRen	
d-BHC	ND	1	0.0	05 mg/k	g 10/29/12	LeiRen	
Dieldrin	ND	1	0.0	03 mg/k	g 10/29/12	LeiRen	
Endosulfan I	ND	1	0.0	04 mg/k	g 10/29/12	LeiRen	
Endosulfan II	ND	1	0.0	04 mg/k	g 10/29/12	LeiRen	
Endosulfan sulfate	ND	1	0.0	04 mg/k	g 10/29/12	LeiRen	
Endrin	ND	1	0.0	04 mg/k	g 10/29/12	LeiRen	
Endrin aldehyde	ND	1	0.0	04 mg/K	g 10/29/12	LeiRen	
Endrin Ketone	ND	1	0.0	05 mg/k	g 10/29/12	LeiRen	
Heptachlor	ND	1	0.0	04 mg/k	g 10/29/12	LeiRen	
Heptachlor epoxide	ND	1	0.0	03 mg/k	g 10/29/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	0.0	03 mg/k	g 10/29/12	LeiRen	
Methoxychlor	ND	1	0.0	25 mg/k	g 10/29/12	LeiRen	
Toxaphene	ND	1	0.	25 mg/k	.g 10/29/12	LeiRen	
Analyte	% Recove	ery	Limits	Notes			
Decachlorobiphenyl DCB (SUI	र) 98		39-149				
Tetrachloro-m-xylene TCMX (S	SUR) 79		50-125				

ND = Not Detected or < RDL

QCBatchID: QC1130977 Analyst:	LeiRen	Method: EPA 80	81A		
Matrix: Solid Analyzed:	10/25/2012	Instrument: SVOA-0	GC (group)		
	Blar	nk Summary			
Analyte	Blank Result	Units	RDL	Notes	
QC1130977MB1		Lange			
4,4'-DDD	ND	mg/Kg	0.005		
4,4'-DDE	ND	mg/Kg	0.004		
4,4'-DDT	ND	mg/Kg	0.005		
a-BHC	ND	mg/Kg	0.004		
Aldrin	ND	mg/Kg	0.002		
b-BHC	ND	mg/Kg	0.003		
Chlordane (technical)	ND	mg/Kg	0.025		
d-BHC	ND	mg/Kg	0.005		
Dieldrin	ND	mg/Kg	0.003		
Endosulfan I	ND	mg/Kg	0.004		
Endosulfan II	ND	mg/Kg	0.004		
Endosulfan sulfate	ND	mg/Kg	0.004		
Endrin	ND	mg/Kg	0.004		
Endrin aldehyde	ND	mg/Kg	0.004		
Endrin Ketone	ND	mg/Kg	0.005		
Heptachlor	ND	mg/Kg	0.004		
Heptachlor epoxide	ND	mg/Kg	0.003		
Lindane (Gamma-BHC)	ND	mg/Kg	0.003		
Methoxychlor	ND	mg/Kg	0.025		
Toxaphene	ND	mg/Kg	0.25		

	ab Control Spike/ Lab	Control Spike	e Duplica	te Summary		
	Spike Amount	Spike Result		Recoveries	Limit	S
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD %Rec	RPD Notes
QC1130977LCS1						
4,4'-DDE	0.1	0.11	mg/Kg	110	70-130	
4,4'-DDT	0.1	0.13	mg/Kg	130	55-130	
a-BHC	0.1	0.11	mg/Kg	110	70-130	
Aldrin	0.1	0.11	mg/Kg	110	55-130	
b-BHC	0.1	0.11	mg/Kg	110	70-130	
d-BHC	0.1	0.099	mg/Kg	99	70-130	
Dieldrin	0.1	0.10	mg/Kg	100	76-151	
Endosulfan l	0.1	0.11	mg/Kg	110	70-130	
Endosulfan II	0.1	0.098	mg/Kg	98	70-130	
Endosulfan sulfate	0.1	0.096	mg/Kg	96	70-130	
Endrin	0.1	0.11	mg/Kg	110	55-130	
Endrin aldehyde	0.1	0.12	mg/Kg	120	70-130	
Heptachlor	0.1	0.12	mg/Kg	120	55-130	
Heptachlor epoxide	0.1	0.12	mg/Kg	120	70-130	
Lindane (Gamma-BHC)	0.1	0.12	mg/Kg	120	55-130	
Methoxychlor	0.1	0.10	mg/Kg	100	70-130	

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

QCBatchID: QC1130977	Analyst:	LeiRer	1	M	ethod: E	EPA 8081A						
Matrix: Solid	Analyzed:	10/25/2	2012	Instru	iment: S	SVOA-GC (gr	oup)	ata da Alexandra Alexandra				
	Mat	rix Sp	ike/Mat	rix Spik	e Dupl	licate Sum	mary			· · ·		
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1130977MS1, QC1130977MSD1				•						So	ource:	312599-001
4,4'-DDE	ND	0.1	0.1	0.097	0.089	mg/Kg	97	89	8.6	70-130	35	
4,4'-DDT	ND	0.1	0.1	0.11	0.10	mg/Kg	110	100	9.5	50-135	35	
a-BHC	ND	0.1	0.1	0.10	0.095	mg/Kg	100	95	5.1	70-130	35	
Aldrin	ND	0.1	0.1	0.098	0.089	mg/Kg	98	89	9.6	50-135	35	
b-BHC	ND	0.1	0.1	0.11	0.094	mg/Kg	110	94	15.7	70-130	35	
d-BHC	ND	0.1	0.1	0.087	0.078	mg/Kg	87	78	10.9	70-130	35	
Dieldrin	ND	0.1	0.1	0.094	0.086	mg/Kg	94	86	8.9	76-151	35	
Endosulfan l	ND	0.1	0.1	0.10	0.093	mg/Kg	100	93	7.3	70-130	35	
Endosulfan II	ND	0.1	0.1	0.086	0.079	mg/Kg	86	79	8.5	70-130	35	
Endosulfan sulfate	ND	0.1	0.1	0.086	0.079	mg/Kg	86	79	8.5	70-130	35	
Endrin	ND	0.1	0.1	0.10	0.094	mg/Kg	100	94	6.2	50-135	35	
Endrin aldehyde	ND	0.1	0.1	0.10	0.093	mg/Kg	100	93	7.3	70-130	35	
Heptachlor	ND	0.1	0.1	0.11	0.10	mg/Kg	110	100	9.5	50-135	35	
Heptachlor epoxide	ND	0.1	0.1	0.11	0.097	mg/Kg	110	97	12.6	70-130	35	
Lindane (Gamma-BHC)	ND	0.1	0.1	0.11	0.097	mg/Kg	110	97	12.6	50-135	35	
Methoxychlor	ND	0.1	0.1	0.13	0.12	mg/Kg	130	120	8.0	70-130	35	

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

Notes and Definitions

Analyte was present in an associated method blank. Associated sample data was reported with В qualifier. Laboratory Contamination. С The sample duplicate RPD was not within control limits, the sample data was reported without further D clarification. DF **Dilution Factor** Sample result is calculated on a dry weigh basis DW Reported value is estimated J The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control L limits. Associated sample data was reported with qualifier. The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix Μ interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification. Method Detection Limit MDL The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike NC recovery and limits do not apply. Analyte was not detected or was less than the detection limit. ND Sample was received without proper preservation according to EPA guidelines. Ρ RDL Reporting Detection Limit The surrogate recovery was out of control limits due to matrix interference. The associated method S blank surrogate recovery was within control limits and the sample data was reported without further clarification. Sample was extracted/analyzed past the holding time. Т

DF = Dilution Factor

Lab Request 312626 Page 3 of 3

 $\langle \overline{3}$ م او، <8 σī 4 N 15 14 13 12 Ξ 0 Q SEND REPORT TO: COMPANY 806 North Batavia = Orange, CA 92868 Phone: (714) 771-6900 = Fax: (714) 538-1209 ADDRESS: 3734 MUEPHYCANYON REB-20 EMAIL: Date: Printed Name: Relinquished by PHONE: ASSOCIATED LABORATORIES Signature: Total No. of Samples: 0 24 \mathcal{F}_{i} сл) ' نح 1 3 40 VAZ <u>8-13-0,6</u> B-11-0.5 XIAN Pierce gtellegene 50-6 14 - 2.5Ļ 949) 378-8448 12-21 14 - 0.51-2.5 Sample ID CUSTOMER INFORMATION LIGHTON & ASSOCIATES 1240 CA GWEN Leicecen leightong roup. cant ADDRESS: 7-15 00 ... **Received By:** Printed Name: Signature; 92123 10-24-12 10/24/12 4 Date Method of Shipment: SAMPLED BY: P.O. #: NUMBER: PROJECT NAME: 9:27 9:23 10:02 9:45 9:40 9:08 9:13 B0:01 Time SAN DIEGO COUNTY, Relinquished by 142410-004 Printed Name: Matrix PROJECT INFORMATION Signature: 87 10-24-12 Chain of Custody Record <ß L'AMPUS PARK 6 CA-16 CURRIER Container Number/Size ì 802 JAC ﺟ OR2 Time: 3.00 せつ Les-1 Pres. Ņ Date: 10/24/12 Printed Name: Signature: Received By: ANALYSIS REQUEST Preservative: - BCB - DEST CLOC \langle Cap 50 <u>--</u> || REQUIRED TURN AROUND TIME: 72 Hours: lce $2 = HCI \quad 3 = HNO_3$ Ņ Relinquished by Date: Printed Name: Signature: 48 Hours: Lab Job No, Page _ $4 = H_2SO_4$ Time: **Test Instructions & Comments** Standard: ω 31262 5 = NaOH 624 Hours: Received By: Date: Signature: Printed Name: | 오, =Other Time: ω

Distribution: White - Laboratory Canary - Laboratory Pink - Project/Account Manager Goldenrod - Sampler/Originator

Nataliya Afendikova

From: Danielle Roberts [droberts@associatedlabs.com]

Sent: Thursday, October 25, 2012 1:57 PM

To: 'Greg Hess'

Cc: nafendikova@associatedlabs.com

Subject: 312626

•

Just received a call from Leighton. They want to put a hold on 312626 -001 -002 -007 -008 For 8081

Danielle Roberts Project Manager Associated Laboratories 806 N. Batavia Orange, CA 92868 droberts@associatedlabs.com Tel 714-771-6900 Cell 714-920-5157

FAX 714-538-1209

SAMPLE ACCEPTANCE CHECKLIST

Date Received: 10/24/12		er's Name: Yes Section 2)) No)	
Section 2 Was the cooler packed with: $\[\ \ \ \ \ \ \ \ \ \ \ \ \$	Ice Packs None	_ Bubble Wrap _ Other	St	yrofoar	1 —
Section 3 Was a COC received?			YES	NO	N/A

Was a COC received?			
Is it properly completed? (IDs, sampling date and time, signature, test)			
Were custody seals present?		<u> </u>	
If Yes – were they intact?			\checkmark
Were all samples sealed in plastic bags?		-	
Did all samples arrive intact? If no, indicate below.	\checkmark		
Did all bottle labels agree with COC? (ID, dates and times)			
Were correct containers used for the tests required?			
Was a sufficient amount of sample sent for tests indicated?			
Was there headspace in VOA vials?			
Were the containers labeled with correct preservatives?			
Was total residual chlorine measured (Fish Bioassay samples only)? *			

*: If the answer is no, please inform Fish Bioassay Dept. immediately.

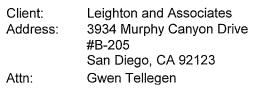
Section 4

Explanations/Comments

Section 5

Was Project Manager notifie	d of discrepancies:	Y / N	N/A
-----------------------------	---------------------	-------	-----

Grony lee


Completed By:

Date: 10/24/12

Associated Laboratories

806 N. Batavia - Orange, CA 92868 Tel (714)771-6900 Fax (714)538-1209 www.associatedlabs.com Info@associatedlabs.com

Comments: #042410.004, Campus Park West I-5 & CA-76 NE

Lab Request:	312722
Report Date:	10/31/2012
Date Received:	10/25/2012

Client ID: 14085

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #Client Sample ID312722-001B15-0.5'312722-002B15-2.0'312722-003B16-0.5'312722-004B16-2.5'

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED ABORATORIES by,

9 Achle (for)

Edward S. Behare, Ph.D. Lab Director NOTE: Unless notified in writing , all samples will be discarded by appropriate disposal protocol 45 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental

ſ	Matrix: Solid	Client: Leighton	and Associates	Collector:		
	Sampled: 10/25/2012 14:25	Site:		Notes:		
	Sample #: <u>312722-001</u>	Client Sample #: B15-0.5'			1	

Jample #. <u>J12122-001</u>	Olient Gample #. Dio 0.0						
Analyte	Result	DF	RD	L Units	Analyzed	By N	otes
	Prep Method: EPA 3545					QCBatchID:	QC1131016
4,4'-DDD	ND	1	0.00	05 mg/Kg	10/30/12	LeiRen	
4,4'-DDE	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
4,4'-DDT	ND	1	0.00	05 mg/Kg	10/30/12	LeiRen	
a-BHC	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
Aldrin	ND	1	0.00	02 mg/Kg	10/30/12	LeiRen	
b-BHC	ND	1	0.00	03 mg/Kg	10/30/12	LeiRen	
Chlordane (technical)	ND	1	0.02	25 mg/Kg	10/30/12	LeiRen	
d-BHC	ND	1	0.00	05 mg/Kg	10/30/12	LeiRen	
Dieldrin	ND	1	0.00	03 mg/Kg	10/30/12	LeiRen	
Endosulfan I	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
Endosulfan II	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
Endosulfan sulfate	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
Endrin	ND	1	0.00	04 mg/Kg	10/30/12	LeiRen	
Endrin aldehyde	ND	1	0.0	04 mg/Kg	10/30/12	LeiRen	
Endrin Ketone	ND	1	0.0	05 mg/Kg	10/30/12	LeiRen	
Heptachlor	ND	1	0.0	04 mg/Kg	10/30/12	LeiRen	
Heptachlor epoxide	ND	1	0.0	03 mg/Kg	10/30/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	0.0	03 mg/Kg	10/30/12	LeiRen	
Methoxychlor	ND	1	0.0	25 mg/Kg	10/30/12	LeiRen	
Toxaphene	ND	1	0.2	25 mg/Kg	10/30/12	LeiRen	
Analyte	<u>% Recove</u>	ry	Limits	Notes			
Decachlorobiphenyl DCB (SUR)	107		39-149				
Tetrachloro-m-xylene TCMX (SU	R) 117		50-125				

ASSOCIATED LABORATORIES

Analytical Results Report Lab Request 312722 Page 2 of 5 Matrix: SolidClient: Leighton and AssociatesCollector: ClientSampled: 10/25/2012 14:35Site:Notes:Sample #: 312722-002Client Sample #: B15-2.0'

Analyte	Result	DF	F	RDL	Units	Analyzed	By N	lotes
ethod: EPA 8081 NELAC	Prep Method: EPA 3545						QCBatchID	: QC1131016
4,4'-DDD	ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
4,4'-DDE	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
4,4'-DDT	ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
a-BHC	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Aldrin	ND	1	(0.002	mg/Kg	10/30/12	LeiRen	
b-BHC	ND	1	(0.003	mg/Kg	10/30/12	LeiRen	
Chlordane (technical)	ND	1	(0.025	mg/Kg	10/30/12	LeiRen	
d-BHC	ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
Dieldrin	ND	1	(0.003	mg/Kg	10/30/12	LeiRen	
Endosulfan I	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endosulfan II	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endosulfan sulfate	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin aldehyde	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin Ketone	ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
Heptachlor	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Heptachlor epoxide	ND	1	(0.003	mg/Kg	10/30/12	LeiRen	
Lindane (Gamma-BHC)	ND	1	(0.003	mg/Kg	10/30/12	LeiRen	
Methoxychlor	ND	1	(0.025	mg/Kg	10/30/12	LeiRen	
Toxaphene	ND	1		0.25	mg/Kg	10/30/12	LeiRen	
Analyte	<u>% Recover</u>	Υ	Limits		Notes			
Decachlorobiphenyl DCB (SUR) 102		39-149					
Tetrachloro-m-xylene TCMX (S	UR) 108		50-125					

ND = Not Detected or < RDL

Matrix: Solid	Client:	Leighton and A	ssociates			Collect	or: Client		
Sampled: 10/25/2012	Site:					Not	es:		
Sample #: <u>312722-003</u>	Client Sample #:	B16-0.5'					de la companya de la		
Analyte		Result	DF	F	RDL	Units	Analyzed	Ву	Notes
Nethod: EPA 8081 NELAC	Prep Method: EPA	3545						QCBatchl	D: QC1131016
4,4'-DDD		ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
4,4'-DDE		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
4,4'-DDT		ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
a-BHC		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Aldrin		ND	1	(0.002	mg/Kg	10/30/12	LeiRen	
b-BHC		ND	1	(0.003	mg/Kg	10/30/12	LeiRen	
Chlordane (technical)		ND	1	(0.025	mg/Kg	10/30/12	LeiRen	
d-BHC	******************************	ND	1	(0.005	mg/Kg	10/30/12	LeiRen	
Dieldrin		ND	1	(0.003	mg/Kg	10/30/12	LeiRen	*****************
Endosulfan I		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endosulfan II		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	*******************
Endosulfan sulfate		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin	*******	ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin aldehyde		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Endrin Ketone		ND	1		0.005	mg/Kg	10/30/12	LeiRen	*****
Heptachlor		ND	1	(0.004	mg/Kg	10/30/12	LeiRen	
Heptachlor epoxide		ND	1		0.003	mg/Kg	10/30/12	LeiRen	
Lindane (Gamma-BHC)	***************************************	ND	1		0.003	mg/Kg	10/30/12	LeiRen	
Methoxychlor	•••••	ND	1	(0.025	mg/Kg	10/30/12	LeiRen	
Toxaphene		ND	1		0.25	mg/Kg	10/30/12	LeiRen	
Analyte		% Recovery		Limits		Notes			
Decachlorobiphenyl DCB (SL	JR)	91		39-149					
Tetrachloro-m-xylene TCMX	(SUR)	103		50-125					

Matrix: Solid	Cli	ent: Leighton and A	ssociate	S		Collect	or: Client		
Sampled: 10/25/2012	S	ite:				Note	es:		
Sample #: <u>312722-004</u>	Client Sampl	e #: B16-2.5'	-14						
Analyte		Result	DF	R	DL	Units	Analyzed	Ву	Notes
lethod: EPA 8081 NELAC	Prep Method: E	EPA 3545							D: QC1131016
4,4'-DDD		ND	1	0.	.005	mg/Kg	10/30/12	LeiRen	
4,4'-DDE		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
4,4'-DDT		ND	1	0.	.005	mg/Kg	10/30/12	LeiRen	
a-BHC		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Aldrin		ND	1	0.	.002	mg/Kg	10/30/12	LeiRen	
b-BHC		ND	1	0.	.003	mg/Kg	10/30/12	LeiRen	
Chlordane (technical)		ND	1	0.	.025	mg/Kg	10/30/12	LeiRen	
d-BHC		ND	1	0.	.005	mg/Kg	10/30/12	LeiRen	
Dieldrin		ND	1	0.	.003	mg/Kg	10/30/12	LeiRen	
Endosulfan I		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Endosulfan II		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Endosulfan sulfate		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Endrin		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Endrin aldehyde		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Endrin Ketone		ND	1	0.	.005	mg/Kg	10/30/12	LeiRen	
Heptachlor		ND	1	0.	.004	mg/Kg	10/30/12	LeiRen	
Heptachlor epoxide		ND	1	0.	.003	mg/Kg	10/30/12	LeiRen	
Lindane (Gamma-BHC)		ND	1	0.	.003	mg/Kg	10/30/12	LeiRen	
Methoxychlor		ND	1	0.	.025	mg/Kg	10/30/12	LeiRen	
Toxaphene		ND	1	(0.25	mg/Kg	10/30/12	LeiRen	
Analyte		<u>% Recovery</u>	<u>/</u>	Limits		Notes			
Decachlorobiphenyl DCB (S	SUR)	117		39-149					
Tetrachloro-m-xylene TCMX	((SUR)	114		50-125					

QCBatchID: QC1131016	Analyst:	LeiRen	Method: EF	PA 8081A		
Matrix: Solid	Analyzed:	10/29/2012	Instrument: SV	OA-GC (group)	· · · · · · · · · · · · · · · · · · ·	
		Bla	ank Summary		· · · · ·	· · · · · · · · · · · · · · · · · · ·
		Blank				
Analyte		Result	Units	RDL	Notes	
QC1131016MB1						
4,4'-DDD		ND	mg/Kg	0.005		
4,4'-DDE		ND	mg/Kg	0.004		
4,4'-DDT		ND	mg/Kg	0.005		
a-BHC		ND	mg/Kg	0.004		
Aldrin		ND	mg/Kg	0.002		
b-BHC		ND	mg/Kg	0.003		
Chlordane (technical)		ND	mg/Kg	0.025		
d-BHC		ND	mg/Kg	0.005		
Dieldrin		ND	mg/Kg	0.003		
Endosulfan I		ND	mg/Kg	0.004		
Endosulfan II		ND	mg/Kg	0.004		
Endosulfan sulfate		ND	mg/Kg	0.004		
Endrin		ND	mg/Kg	0.004		
Endrin aldehyde		ND	mg/Kg	0.004		
Endrin Ketone		ND	mg/Kg	0.005		
Heptachlor		ND	mg/Kg	0.004		
Heptachlor epoxide		ND	mg/Kg	0.003		
Lindane (Gamma-BHC)		ND	mg/Kg	0.003		
Methoxychlor		ND	mg/Kg	0.025		
Toxaphene		ND	mg/Kg	0.25		

	ab Control Spik	(e/ Lab Conti	ol Spike	Duplica	te Sun	nmary				
	Spike A	mount Spike	Result		Reco	overies		Lim	its	
Analyte	LCS	LCSD LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1131016LCS1										
4,4'-DDE	0.1	0.11		mg/Kg	110			70-130		
4,4'-DDT	0.1	0.13		mg/Kg	130			55-130		
a-BHC	0.1	0.11		mg/Kg	110			70-130		
Aldrin	0.1	0.11		mg/Kg	110			55-130		
b-BHC	0.1	0.12		mg/Kg	120			70-130		
d-BHC	0.1	0.089		mg/Kg	89			70-130		
Dieldrin	0.1	0.11		mg/Kg	110			76-151		
Endosulfan I	0.1	0.11		mg/Kg	110			70-130		
Endosulfan II	0.1	0.099		mg/Kg	99			70-130		
Endosulfan sulfate	0.1	0.095		mg/Kg	95			70-130		
Endrin	0.1	0.11		mg/Kg	110			55-130		
Endrin aldehyde	0.1	0.10		mg/Kg	100			70-130		
Heptachlor	0.1	0.13		mg/Kg	130			55-130		
Heptachlor epoxide	0.1	0.12		mg/Kg	120			70-130		
Lindane (Gamma-BHC)	0.1	0.11		mg/Kg	110			55-130		
Methoxychlor	0.1	0.11		mg/Kg	110			70-130		

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

QCBatchID: QC1131016	Analyst:	LeiRer	1	M	ethod: E	PA 8081A						
Matrix: Solid	Analyzed:	10/29/	2012	Instru	iment: S	VOA-GC (gi	oup)					· · · · · · · · · · · · · · · · · · ·
	Mat	rix Sp	ike/Mat	rix Spik	e Dupli	icate Sum	mary	1.	· · · · ·			
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1131016MS1, QC1131016MSD1	t			lue						S	ource:	312722-001
4,4'-DDE	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
4,4'-DDT	ND	0.1	0.1	0.12	0.12	mg/Kg	120	120	0.0	50-135	35	
a-BHC	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
Aldrin	ND	0.1	0.1	0.10	0.10	mg/Kg	100	100	0.0	50-135	35	
b-BHC	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
d-BHC	ND	0.1	0.1	0.094	0.083	mg/Kg	94	83	12.4	70-130	35	
Dieldrin	ND	0.1	0.1	0.10	0.10	mg/Kg	100	100	0.0	76-151	35	
Endosulfan I	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
Endosulfan II	ND	0.1	0.1	0.094	0.097	mg/Kg	94	97	3.1	70-130	35	
Endosulfan sulfate	ND	0.1	0.1	0.093	0.090	mg/Kg	93	90	3.3	70-130	35	
Endrin	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	50-135	35	
Endrin aldehyde	ND	0.1	0.1	0.099	0.095	mg/Kg	99	95	4.1	70-130	35	
Heptachlor	ND	0.1	0.1	0.11	0.12	mg/Kg	110	120	8.7	50-135	35	
Heptachlor epoxide	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	
Lindane (Gamma-BHC)	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	50-135	35	
Methoxychlor	ND	0.1	0.1	0.11	0.11	mg/Kg	110	110	0.0	70-130	35	

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit

Notes and Definitions

Analyte was present in an associated method blank. Associated sample data was reported with В qualifier. С Laboratory Contamination. The sample duplicate RPD was not within control limits, the sample data was reported without further D clarification. **Dilution Factor** DF DW Sample result is calculated on a dry weigh basis Reported value is estimated J The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control L limits. Associated sample data was reported with qualifier. The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix М interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification. Method Detection Limit MDL The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike NC recovery and limits do not apply. Analyte was not detected or was less than the detection limit. ND Sample was received without proper preservation according to EPA guidelines. Ρ RDL **Reporting Detection Limit** The surrogate recovery was out of control limits due to matrix interference. The associated method S blank surrogate recovery was within control limits and the sample data was reported without further clarification. Sample was extracted/analyzed past the holding time. Т

ND = Not Detected or < RDL MDL = Method Detection Limit RDL = Reporting Detection Limit DF = Dilution Factor

																											· · · · · · · · · · · · · · · · · · ·
22							Comments																=Other	3.			Time:
312722	Standard:	24 Hours:					Test Instructions & Comments																:0₄ 5 =NaOH 6	3. Received By:	Signature:	Printed Name:	Date:
Lab Job No. Page	AROUND TIME:	48 Hours:					Te																$3 = HNO_3$ $4 = H_2SO_4$	Relinquished by	re:	Name:	Time:
	REQUIRED TURN AROUND TIME:	72 Hours:		/ / / \$																			1= lce 2 =HCI	2. Relingu	Signature:	Printed Name:	Time: Date:
r Record				153 (SA)	CHE S				- di	? २	9	-											Preservative:	Received By:	Signature: N. 1.	Printed Name:	Date: Date: 10250
of Custody Record	FORMATION	Park 1, Dest		A JE-FO			Container Number/Size Pres.	THEY TON THE	TOL	, arc	Nor	2												by 2.	x hay	i lonz	-L2 4; 50
Chain	PROJECT INFORMATION	PROPECTIVANE NO PROPECTIVANE PO	04241	5. J. J. S. J.		SAMPLED BY: GATT	Time Matrix 0	225 Soil p.	Se, [soil i'	•											hipment:	1. Relinquished	Signature:	Printed Name	- Date: 0.25
S 200	~		NUMBER	10 N J NOV C ADDRESS.	471.0 3 PO.#	ŋ	Date	211-52-01		c1-52-CJ	10-25-11												Method of Shipment:	Received By:	HA- Unal	Printed Name:	-25-2 3205
ASSOCIATED LABORATORIES 806 North Batavia • Orange, CA 92868 Phone: (714) 771-6900 • Fax: (714) 538-1209	CUSTOMER INFORMATION	COM CU INNO	1 1	Preleigh	L'EN C C C C	8-89	le ID	0,51		2,55	2.51												les:	÷	Signature	Printed	Time: Jos Date:
ASSOCIATED 806 North Batavia = Phone: (714) 771-69	CUST	compart and to M	SENPREPORTIO: TO	ADDRESS:) CO 2 A		PHONE: QAD	Sample ID	1 R15-C	2 15 - 2	3316-0	4 B16 - 3	5	9	7	8	6	10	4	12	13	14	15	Total No. of Samples:	Relinquished by	Signature:	Pripted Name:	1 ?

.

Distribution: White - Laboratory Canary - Laboratory Pink - Project/Account Manager Goldenrod - Sampler/Originator

.

FAX 714-538-1209

SAMPLE ACCEPTANCE CHECKLIST

Section 1 Project: Client:	N (0	
Section 2 Was the cooler packed with:IceIce PacksBubble Wrap PaperNoneOther Cooler or box temperature:S.oc (Acceptance range is 0 to 6 Deg. C.)	St	yrofoam	L
Section 3	YES	NO	N/A

Section 3			IN/A
Was a COC received?		ļ	ļ
Is it properly completed? (IDs, sampling date and time, signature, test)			
Were custody seals present?	•	V	
If Yes – were they intact?			L
Were all samples sealed in plastic bags?			
Did all samples arrive intact? If no, indicate below.	V,		
Did all bottle labels agree with COC? (ID, dates and times)			
Were correct containers used for the tests required?			
Was a sufficient amount of sample sent for tests indicated?		L	
Was there headspace in VOA vials?			
Were the containers labeled with correct preservatives?			V
Was total residual chlorine measured (Fish Bioassay samples only)? *			
* IS 1			

*: If the answer is no, please inform Fish Bioassay Dept. immediately.

Section 4		
Explanations/Comments	:	· · · ·
	·	
G		

Completed By: M. Echief Date:	0 25 12

APPENDIX C

PROUCL DATASHEET

	A B C	D E	F	G H I J K I	L
1		General UCL Statistics f	or Data Sets wi		
2	User Selected Options				
3	From File	WorkSheet.wst			
4	Full Precision	OFF			
5	Confidence Coefficient	95%			
6	Number of Bootstrap Operations	2000			
7					
8					
9	Dieldrin				
10					
11			General Sta	tistics	
12		Number of Valid Data	28	Number of Detected Data	4
13	Numbor	of Distinct Detected Data	4	Number of Non-Detect Data	24
14				Percent Non-Detects	85.71%
15					
16	Bow St	atistics		Log-transformed Statistics	
17		Minimum Detected	0.0099	Minimum Detected	-4.615
18		Maximum Detected	0.073	Maximum Detected	-2.617
19		Mean of Detected	0.0347	Mean of Detected	-3.617
20		SD of Detected	0.0277	SD of Detected	0.85
21		Minimum Non-Detect	0.003	Minimum Non-Detect	-5.809
21		Maximum Non-Detect	0.003	Maximum Non-Detect	-5.809
22					
22					
23					
23 24		Warning: There are	only 4 Distinct	Detected Values in this data	
23 24 25	Note: I	-	-	Detected Values in this data tstrap may be performed on this data set	
23 24 25 26		It should be noted that ev	en though boo		
23 24 25 26 27		It should be noted that ev	en though boo	tstrap may be performed on this data set	
23 24 25 26	1	It should be noted that ev the resulting calculations	en though boo may not be rel	tstrap may be performed on this data set	
23 24 25 26 27 28 29	It is recomme	It should be noted that ev the resulting calculations	en though boo may not be rel	tstrap may be performed on this data set liable enough to draw conclusions	
23 24 25 26 27 28 29 30	It is recomme	It should be noted that ev the resulting calculations	en though boo may not be rel	tstrap may be performed on this data set liable enough to draw conclusions	
23 24 25 26 27 28 29 30 31	It is recomme	It should be noted that ev the resulting calculations	en though boo may not be rel	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results.	
23 24 25 26 27 28 29 30 31 32	It is recomme	It should be noted that ev the resulting calculations ended to have 10-15 or m	en though bood may not be rel ore distinct obs UCL Statis	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results.	
23 24 25 26 27 28 29 30 31 32 33	It is recomme	It should be noted that ev the resulting calculations ended to have 10-15 or m	en though bood may not be rel ore distinct obs UCL Statis	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results.	ly 0.999
23 24 25 26 27 28 29 30 31 32 33 34	It is recomme	It should be noted that even the resulting calculations and to have 10-15 or mended to have 10-15 or m	en though bood may not be rel ore distinct obs UCL Statis	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl	-
23 24 25 26 27 28 29 30 31 32 33	It is recomme Normal Distribution Test w St 5% Sh	It should be noted that even the resulting calculations anded to have 10-15 or m with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value	en though book may not be rel ore distinct obs UCL Statis y 0.922	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic	0.999
23 24 25 26 27 28 29 30 31 32 33 34 35 36	It is recomme Normal Distribution Test w St 5% Sh	It should be noted that even the resulting calculations anded to have 10-15 or m with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value	en though book may not be rel ore distinct obs UCL Statis y 0.922	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.999
23 24 25 26 27 28 29 30 31 32 33 33 34 35	It is recomme Normal Distribution Test w St 5% Sh	It should be noted that even the resulting calculations anded to have 10-15 or m with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level	en though book may not be rel ore distinct obs UCL Statis y 0.922	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.999
23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38	It is recomme Normal Distribution Test w St 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or m with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level	en though book may not be rel ore distinct obs UCL Statis y 0.922	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	0.999
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	It is recomme Normal Distribution Test w St 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level	en though book may not be rel ore distinct obs UCL Statis y 0.922	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution	0.999
23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38	It is recomme Normal Distribution Test w St 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level mal Distribution DL/2 Substitution Method	UCL Statis	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method	0.999 0.748 -6.09
23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 39 40	It is recomme Normal Distribution Test w St 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean	en though book may not be rel ore distinct obs UCL Statis y 0.922 0.748	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean	0.999 0.748 -6.09
23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 39 40 41 42	It is recomme Normal Distribution Test w Sł 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean SD	UCL Statis V 0.922 0.748 0.00625 0.015	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	0.999 0.748 -6.09 1.066
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	It is recomme Normal Distribution Test w Sł 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean SD	UCL Statis V 0.922 0.748 0.00625 0.015	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	0.999 0.748 -6.09 1.066
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	It is recomme Normal Distribution Test w Sł 5% Sh Data appear Normal at Assuming Norm	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level mal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	UCL Statis V 0.922 0.748 0.00625 0.015	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	0.999 0.748 -6.09 1.066 0.00673
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	It is recomme Normal Distribution Test w Sh 5% Sh Data appear Normal at Assuming Norm C Maximum Likelihood	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL d Estimate(MLE) Method	en though book may not be rel ore distinct obs UCL Statis y 0.922 0.748 0.00625 0.015 0.0111	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	-6.09 -6.09 1.066 0.00673 -7.815
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	It is recomme Normal Distribution Test w Sh 5% Sh Data appear Normal at Assuming Norm C Maximum Likelihood	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level mal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL d Estimate(MLE) Method Mean	en though book may not be rel ore distinct obs UCL Statis y 0.922 0.748 0.0412	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	-6.09 -6.09 1.066 0.00673 -7.815
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	It is recomme Normal Distribution Test w Normal Distribution Test w St S% Sh Data appear Normal at Assuming Norm C Maximum Likelihood	It should be noted that even the resulting calculations anded to have 10-15 or me with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL d Estimate(MLE) Method Mean SD	en though book may not be rel ore distinct obs UCL Statis y 0.922 0.748 0.0174 0.00625 0.015 0.0111 0.0111	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values On Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	0.999 0.748 -6.09 1.066 0.00673 -7.815 2.608 0.00569
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	It is recomme Normal Distribution Test w Normal Distribution Test w St S% Sh Data appear Normal at Assuming Norm C Maximum Likelihood	It should be noted that eventhe resulting calculations anded to have 10-15 or mean with Detected Values Only hapiro Wilk Test Statistic hapiro Wilk Critical Value 5% Significance Level nal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL d Estimate(MLE) Method Mean SD 95% MLE (t) UCL	en though book may not be rel ore distinct obs UCL Statis y 0.922 0.748 0.0412 0.0412 0.0489	tstrap may be performed on this data set liable enough to draw conclusions servations for accurate and meaningful results. stics Lognormal Distribution Test with Detected Values Onl Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale	0.999 0.748 -6.09 1.066 0.00673 -7.815 2.608

	А	В	С	D	E	F	G	Н	I	J	K	L
51										95% BCA Bo	ootstrap UCL	0.0135
52											95% H UCL	0.139
53												
54	Ga	amma Dist	ribution Test	with Detecte	ed Values On	ly					Values Only	
55				k star (bia	as corrected)	0.691		Data appe	ar Normal	at 5% Signific	ance Level	
56					Theta Star	0.0502						
57					nu star	5.529						
58												
59					Fest Statistic	0.208			•	etric Statistic		
60					Critical Value	0.66			k	Kaplan-Meier	(KM) Method	
61				_	Fest Statistic	0.66					Mean	0.0134
62					Critical Value	0.398					SD	0.0126
63	Data	appear Ga	amma Distrib	uted at 5% S	ignificance l	evel					SE of Mean	0.00274
64											6 KM (t) UCL	0.0181
65			ssuming Gan								6 KM (z) UCL	0.018
66		Gamma R	ROS Statistics	using Extra	polated Data					•	ckknife) UCL	0.0203
67					Minimum	0.000001				95% KM (boo	• •	0.019
68					Maximum	0.073					I (BCA) UCL	0.0386
69					Mean	0.00496			```	Percentile Bo	• /	0.0386
70					Median	0.000001				95% KM (Chel	- /	0.0254
71					SD	0.0154				.5% KM (Chel	. ,	0.0306
72					k star	0.125			ç	9% KM (Chel	byshev) UCL	0.0407
73					Theta star	0.0397						
74					Nu star	6.999			Potential	UCLs to Use		
75					AppChi2	2.17				95%	6 KM (t) UCL	0.0181
76	95		Approximate	-	-	0.016			95% KM (Percentile Bo	otstrap) UCL	0.0386
77			usted Gamma	•	when n < 40)	N/A						
78	Note: DL/2 is	s not a reco	ommended m	ethod.								
79												
80											oriate 95% UC	
81	Th	nese recom	mendations							ıh, Maichle, a	nd Lee (2006).
82				For add	itional insigh	t, the user m	ay want to c	consult a sta	tistician.			
83												